Thursday, January 30, 2014

Mathematics in Nature

http://malini-math.blogspot.in/2010/08/maths-and-nature.html


Mathematics is everywhere in this universe. We seldom note it. We enjoy nature and are not interested in going deep about what mathematical idea is in it. Here are a very few properties of mathematics that are depicted  in nature.
SYMMETRY

Symmetry is everywhere you look in nature .

Symmetry is when a figure has two sides that are mirror images of one another. It would then be possible to draw a line through a picture of the object and along either side the image would look exactly the same. This line would be called a line of symmetry. 

There are two kinds of symmetry :

One is bilateral symmetry in which an object has two sides that are mirror images of each other.

The human body would be an excellent example of a living being that has bilateral symmetry.



Few more examples in nature showing bilateral symmetry.









The other kind of symmetry is radial symmetry. This is where there is a center point and numerous lines of symmetry could be drawn.

The most obvious geometric example would be a circle.


Few more examples in nature showing radial symmetry.






































SHAPES

Geometry is the branch of mathematics  that describes shapes.

Sphere:

A sphere  is a perfectly round geometrical object in three-dimensional space, such as the shape of a round ball.

The shape of the Earth is very close to that of an oblate spheroid, a sphere flattened along the axis from pole to pole such that there is a bulge around the equator.






















Hexagons:

Hexagons are six-sided polygons, closed, 2-dimensional, many-sided figures with straight edges.


For a beehive, close packing is important to maximise the use of space. Hexagons fit most closely together without any gaps; so hexagonal wax cells are what bees create to store their eggs and larvae.
















Cones:

A cone is a three-dimensional geometric shape that tapers smoothly from a flat, usually circular base to a point called the apex or vertex.

Volcanoes form cones, the steepness and height of which depends on the runniness (viscosity) of the lava. Fast, runny lava forms flatter cones; thick, viscous lava forms steep-sided cones.
















Few more cones in nature:

































Parallel lines:

In mathematics, parallel lines stretch to infinity, neither converging nor diverging.

These parallel dunes in the Australian desert aren't perfect - the physical world rarely is.

















Fibonacci spiral:

If you construct a series of squares with lengths equal to the Fibonacci numbers (1,1,2,3,5, etc) and trace a line through the diagonals of each square, it forms a Fibonacci spiral.

Many examples of the Fibonacci spiral can be seen in nature, including in the chambers of a nautilus shell.


















No comments:

Post a Comment